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ABSTRACT 

Researchers often wish to test a large set of related interventions or approaches to 
implementation. A factorial experiment accomplishes this by examining not only basic 
treatment-control comparisons but also the effects of multiple implementation factors such as 
different dosages or implementation strategies, and the interactions between these factor levels. 
However, traditional methods of statistical inference may require prohibitively large sample sizes 
to perform complex factorial experiments. 

In this paper, we present a Bayesian approach to factorial design. By using hierarchical 
priors and partial pooling, we show how Bayesian analysis substantially increases the precision 
of estimates in complex experiments with many factors and factor levels, while controlling the 
risk of false positives from multiple comparisons. Using an experiment we performed for the 
U.S. Department of Education as a motivating example, we perform power calculations for both 
classical and Bayesian methods. We repeatedly simulate factorial experiments with a variety of 
sample sizes and numbers of treatment arms to estimate the minimum detectable effect (MDE) 
for each combination. 

We found that the Bayesian approach yields substantially lower MDEs when compared with 
classical methods for complex factorial experiments. For example, to test 72 treatment arms (five 
factors with two or three levels each), a classical experiment requires nearly twice the sample 
size as a Bayesian experiment to obtain a given MDE. Overall, our study showed that Bayesian 
methods are a valuable tool for researchers interested in studying complex interventions. They 
make factorial experiments with many treatment arms vastly more feasible. 
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I. BACKGROUND AND MOTIVATION 

Most social policy experiments compare a single treatment group with a control group. For 
example, a typical study in the field of education research might compare the effect of 
introducing a new set of mathematics lesson plans with that of maintaining the status quo. 
However, this type of study is limited to a small number of treatment arms—typically only one 
or two approaches are tested. A variety of open research questions in education would benefit 
from a design that makes it possible to evaluate many different practices in one study, as there 
are often a number of interventions of interest in a given topic area, and (within each of those) 
there are many different ways to implement a given program.  

Factorial experiments, which have long been used in agriculture and engineering (Cox 
1958), allow researchers to efficiently test a larger and richer set of related programs or practices 
in a single study. A factorial experiment moves beyond basic treatment-control comparison and 
examines the effects of multiple implementation factors such as different dosages and 
implementation strategies, along with the interactions between these factor levels. For example, 
in a hypothetical study of new math curricula, a researcher might want to study different lesson 
lengths (30, 60, or 90 minutes per day) and different teaching strategies (whether to deliver 
lessons using standard classroom teachers or math specialists). Because there is a possibility of 
interaction effects (math specialists may be particularly effective in a longer teaching session), 
these two factors cannot be tested separately. A factorial experiment assigns classes to a random 
lesson length and random teaching strategy, so that all combinations of lesson length and 
teaching strategy are tested. This design has two factors (lesson length and teaching strategy) that 
have three and two levels respectively (30, 60, and 90 minute lessons; standard teachers and 
math specialists). Table 1 shows the six treatment arms of this example (3 × 2) configuration. In 
addition to reflecting differences in treatment, the factors of a factorial experiment can also 
encode differences in treated populations (such as by age groups or gender). Such an 
experimental design may be useful for studying heterogeneity in treatment effects by identifying 
the groups for which a treatment is most or least beneficial.  

Table 1.  Illustrative framework for a 3 × 2 study design 

  Factor B: Teaching strategy 

  Standard teacher  Math specialist 

Fa
ct

or
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:  
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on

 le
ng
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30 minutes Standard teacher for 30 minutes  Math specialist for 30 minutes 

60 minutes Standard teacher for 60 minutes  Math specialist for 60 minutes 

90 minutes Standard teacher for 90 minutes  Math specialist for 90 minutes 

Note: This table illustrates the structure of a simple factorial experiment on math classes. The experiment has two 
factors (lesson length and teaching strategy) that have three and two levels respectively in a (3 × 2) design. 
Each cell of the table indicates a unique combination of factor levels that defines one of the study’s 
treatment arms. 

 
Historically, factorial experiments in education have been rare, in part because of the large 

sample sizes required. Such large sample sizes often come with major cost and logistical 
challenges, as compliance with treatment must be maintained across multiple treatment arms; in 
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addition, managing compliance with large samples can be particularly complex in an education 
setting. There are also methodological challenges associated with large sample sizes. In a 
conventional factorial design seeking to estimate the effect of a number of treatment arms, each 
treatment arm requires its own independent hypothesis test. This means an experiment with 
many treatment arms will have to run many such independent tests. As the number of hypothesis 
tests increases, so does the probability that at least one of them will yield a false positive—a 
situation referred to as the multiple comparisons problem (Waller and Duncan 1969). The large 
number of contrasts in a factorial experiment makes it especially susceptible to this issue. The 
U.S. Department of Education’s Institute for Education Sciences has been particularly focused 
on this problem. Specifically, it has established strict guidelines for accounting for multiple 
comparisons in the What Works Clearinghouse standards, which are used to assess the results of 
impact studies throughout the education field. Although correcting for multiple comparisons is 
possible, the most common ways of doing so effectively apply a post-hoc penalty on the 
precision of the experiment, decreasing the risk of false positives at the cost of increasing the 
likelihood of false negatives (Schochet 2008). Larger sample sizes lead to higher precision, 
mitigating the downside of these post-hoc corrections, but acquiring a sample size large enough 
to test more than a few treatment arms is often challenging. 

Due to sample size constraints, many guidelines for conducting factorial experiments in the 
realms of social policy recommend approaches that either limit the number of tested factors or 
recommend the use of fractional factorial designs that selectively omit certain factor 
combinations from the experiment (for example, Chakraborty et al. 2009; Collins et al. 2009; 
Dziak et al. 2012; Nair et al. 2008). These approaches can be extremely useful when the research 
questions a study is seeking to answer are well defined and relatively small in number. If a study 
is only seeking to test a limited number of factors (and there are only a few tested levels within 
each factor), sample size constraints are less of an issue. Similarly, if a study is able to ignore 
some or all potential interaction effects between factors (that is, if there is a strong theoretical 
basis to believe that factors are simply additive in their effects), fractional factorial designs can 
substantially reduce sample size requirements as well. However, when researchers seek to 
investigate a large number of factors and account for interaction effects between factors, these 
sample-size constraints are more likely to be prohibitive.  

Bayesian inference, which uses data from the experiment alongside any available prior 
information about model parameters and the relationships among them, makes it possible to 
overcome these challenges and efficiently conduct large factorial studies. In particular, large 
factorial experiments benefit from analysis with hierarchical Bayesian models. In such analyses, 
impact parameters of interest themselves are treated as random effects (an approach often 
associated with the work of Andrew Gelman); older methods that treat these parameters as fixed 
would lack these advantages. In this paper, we describe a Bayesian framework for factorial 
experiments and illustrate its use with an example drawn from our work in the field of education 
research. We begin by introducing the set of research questions that motivated us to design a 
factorial experiment. We then introduce the Bayesian approach to analyzing results from a 
factorial experiment, both in general and as it was implemented in our study. We demonstrate the 
utility of this approach with a power analysis and examine the circumstances under which the 
design is likely to prove most useful to other researchers. 
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II. AN EXAMPLE: CREATING SCHOOL PROFILES FOR PARENTS 

We developed a factorial study design as part of a forthcoming U.S. Department of 
Education study that tests methods for presenting school choice information to low-income 
parents (Nichols-Barrer et al. 2016).1  The study investigated how best to help parents make 
informed decisions about which school to select for their children, in the context of open 
enrollment policies that enable parents to choose between large numbers of public schools (such 
as magnet or charter schools). Specifically, our study aimed to generate evidence about how to 
improve school choice information displays or guides. These displays (often created by school 
district or state education officials) usually present a set of school profiles to parents, with 
information about each school that is intended to help parents make informed school selections. 
They are typically published as websites; a common format is to include a map of the school 
district along with a list of short profiles or school website links. The study was designed to 
answer a broad set of research questions pertaining to the effects of different displays on users. 
In particular, we examined the effects of different display strategies on the following three 
concepts: 

• Understandability (ability of users to process factual information) 

• Perceived usability (how easy or satisfying parents find a display to use) 

• Actual school selections (which schools each parent is likely to pick for his or her child) 

A factorial design was the natural choice for several reasons. First, there are a large number 
of independent decisions to make when creating a school information display. Examples include 
the amount and type of information to show for each school, the format in which to present 
performance indicators, and the default sort ordering of the schools shown in the display. 
Second, interactions are very likely to occur between these display elements. For example, the 
effect of adding parent ratings to a display may be beneficial when the overall amount of 
information is low, but when the display is already complex the addition of another data source 
could be overwhelming. An experiment that only tested a small number of displays would 
obscure these types of interactions. To identify which of the many differences between any two 
displays was responsible for a given impact on parents, the experiment needed to test all 
combinations of potential display choices. A factorial experiment provided an appropriate 
framework to match these needs.  

The experiment started with a basic website template that remained the same across all 
treatment arms, and consisted of a map showing school locations at the top followed by a list of 
schools. Four categories of information were shown for each school: distance to school, 
academic performance, safety, and school resources. Based on the results of our power 
calculations, we tested a total of five factors in a (3 × 3 × 2 × 2 × 2) configuration, for a total of 
72 distinct treatment arms. In this study, the five factors were not examined independently: 
rather, the experiment sought to identify which of the 72 possible combinations of factor levels 
                                                           
1 We are members of a larger research team who conducted the study for the U.S. Department of Education. We 
designed the study’s analytical approach and carried out data analysis, while a broader team developed the list of 
tested factors, created the information displays, and managed survey operations. The overall study was directed by 
Steve Glazerman; the information displays used in the experiment were created by Tembo, Inc. 
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represented the best possible design of an information display, after accounting for the 
interaction effects between factors. In other words, the study sought to identify which of the 72 
treatment arms represented the best possible display for each outcome. 

Each factor reflected a type of display feature that varied within the template. The five 
factors were (1) amount of information (the number of indicators in each information category); 
(2) information format (numbers, graphs, or letter-grade icons); (3) use of a reference point 
(inclusion or absence of district averages); (4) data sources (inclusion or absence of parent 
ratings); and (5) default sort order (by distance to school or by academic performance).  Table 2 
shows the full list of factors used, along with their levels. Figure 1 illustrates the experiment with 
an example of an information display shown to parents and diagrams how these variations 
affected it.  

Table 2.  Factors and factor levels in the experiment 

Factor Level 1 Level 2 Level 3 

A. Format Numbers Numbers + icons Numbers + graphs 

B. District average No district average District average shown n.a. 

C. Data sources District only  District + parent ratings  n.a. 

D. Amount of 
information 

Lower amount: one 
attribute per domain 

Higher amount: multiple 
attributes per domain all 
shown at once  

Progressive disclosure: 
lower information by 
default, with option to 
expand the view to the 
higher amount 

E. Default sort order By distance By academics n.a. 

Note: This table shows all levels of the five factors used in our study. 
n.a. = not applicable. 
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Figure 1.  School information displays tested in the experiment 

 

Note: This figure illustrates one of the 72 information displays prepared for the experiment. On the right of the 
screen is a school display with the following factor levels: drop-down information, school data formatted as 
graphs, inclusion of a district reference point, inclusion of parent ratings, and default sort by distance to the 
school. The left side of the figure indicates where and how each factor modifies the display. 

 
The study was designed to test whether different display designs can influence the types of 

schools parents select for their children (for example, whether initially sorting the schools by 
academic quality can “nudge” parents to select higher-quality schools). The study also tested 
whether these information displays had an effect on the outcomes of understandability (whether 
parents correctly answered factual questions about schools in the display) and usability (whether 
parents reported that the display was easy to use or satisfying). One benefit of Bayesian methods 
is that posterior distributions permit the study to make direct probabilistic statements about 
which display features are best. As such, the analysis reported the probability that each display 
strategy outperformed the other tested levels of each factor and identified which combination of 
strategies was best for each outcome. 

III. THE BAYESIAN FACTORIAL DESIGN 

In addition to the data from the experiment, Bayesian analysis requires the researcher to set 
pre-specified probability distributions for the analytic model parameters to help fit the model. 
These prior distributions (or simply priors) allow the experimenter to incorporate previously 
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known information about (1) the values of the parameters or (2) the relationships among 
parameters in the model. We will discuss each of these purposes in turn.    

A researcher unfamiliar with Bayesian inference may be concerned that introducing outside 
information about parameter values would allow experimenters to bias results by incorporating 
their previous expectations into the model. Although this is possible in theory, these concerns are 
manageable in practice. When used appropriately, priors are based on reasonable expectations 
about the parameters, often from reviews of related literature. For example, an education 
researcher might use a standard normal distribution as a prior if other experiments in education 
rarely show effect sizes larger than 1 standard deviation, but should take care to center this prior 
at a mean of zero to remain agnostic about whether the treatment will be successful.  Priors also 
become less important as sample sizes increase. In an experiment with adequate sample size,2 the 
conclusions drawn about parameter values will largely come from the data in the experiment, 
and not the prior (Gelman et al. 2015).  (Even though we argue that Bayesian methods provide 
gains in precision compared to classical methods, designers of Bayesian experiments must still 
use power calculations to assess the adequacy of a given sample size.)  

Prior distributions can also reflect information about the relationships between parameters of 
interest, which has important consequences for a factorial experiment. In particular, using so-
called hierarchical Bayesian prior distributions (to reflect the hierarchy of levels nested within 
factors within the experiment as a whole) has two chief benefits. The first is to achieve what is 
known as partial pooling, which can improve the statistical precision of effect size estimates 
profoundly. Partial pooling refers to the fact that a Bayesian approach can model the effects of 
each level of a given factor with a single shared prior distribution for that factor. For example, in 
our study we model the effects of sorting by distance and sorting by academics as coming from a 
shared prior distribution (and, likewise, each other factor has a prior distribution shared across its 
levels). By inducing partial pooling, the researcher supposes that the distribution of effect sizes 
within the same factor (for example, sort order) may have a distinct variance from the 
distributions found in other factors in the experiment (format, amount of information, and so on). 
This allows data from the experiment to identify which factors are most important (in the sense 
that the variance of effect sizes within those factors are larger than the variance of effect sizes 
within other factors) (Gelman 2005). The term partial pooling refers to the process of pooling 
observations together across all levels of a factor when estimating the effect of each of the 
factor’s levels, especially when that factor proves to be relatively unimportant compared with 
other factors. Within a given factor, the result is that the estimates for the effects of each level are 
informed by one another, leading to larger effective sample sizes and smaller uncertainty in 
estimates. The variance parameters of these priors are also partially pooled to borrow 

                                                           
2 Although priors may be more determinative of final estimates for studies with very small sample sizes, such 
studies are likely to experience many other problems as well. Indeed, the importance of adequately powered studies 
is often underestimated. It is tempting to interpret significant findings in an underpowered experiment as especially 
notable, having achieved the requisite threshold of significance despite the study’s low power; however, the effect 
estimates are often of substantially overestimated magnitude (sometimes by more than tenfold) and have a high 
probability (in extreme cases, nearly 50 percent) of being the wrong sign. See Gelman and Carlin (2014) for more 
details on these phenomena. 
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information about the overall effect size across factors, providing greater stability in estimates of 
factors with few levels (Gelman and Hill 2007).3   

The second advantage of using a hierarchical Bayesian approach to reflect information about 
the structure of the model is to account for multiple comparisons. Classical statistical procedures 
typically perform many hypothesis tests and then correct for the problem of multiple 
comparisons by inflating confidence interval widths or decreasing the p-value cutoff for 
statistical significance, without adjusting effect estimates themselves (Benjamini and Hochberg 
1995). Although this reduces the risk of incorrectly identifying effects as significant (reducing 
Type I error), it does so at the cost of obfuscating potentially important effects (increasing Type 
II error). Because a Bayesian approach focuses on estimating effects in a single, unified 
procedure, rather than determining whether each effect is significant via repeated separate 
hypothesis tests, it avoids the problem of multiple comparisons that arises from repeated testing. 
Instead, using a hierarchical prior structure controls the risk of spurious overestimation within 
the model itself. The partial pooling induced by a hierarchical set of priors has the effect of 
drawing effect estimates closer to one another and toward zero (when the highest-level priors in 
the model are centered at zero, as is typically the case). The result is that, instead of expanding 
confidence intervals and leaving effect estimates unchanged, the Bayesian approach produces 
(appropriately) more conservative effect estimates that do not require subsequent correction to 
represent statistical precision accurately (Gelman 2012).  

IV. MODEL 

The full Bayesian model for a factorial experiment consists of a likelihood and a set of 
hierarchical priors (also known as random effects or shrinkage priors) for the model’s 
parameters. The likelihood resembles the classical regression model: each level of each factor 
has a main effect, and there is an interaction effect for each combination of the levels of each 
combination of factors. In our case, we include up to pairwise interactions between factor levels; 
in advance of the study, we determined on a theoretical basis that three-way or higher dimension 
interactions were likely to be very small (Li et al. 2006). The main effect and pairwise interaction 
effect terms can be equivalently written as either the product of parameters and indicator 
variables or as sets of main effects and of interaction effects that are indexed by factor and level. 
(Given the large number of treatment arms, we chose the latter representation for the sake of 
concision.) Additional covariates are included as additional linear terms as per classical linear 
regression; in our case we use these terms to control for respondents’ demographic 
characteristics. 

                                                           
3 These within-factor variance components can be interpreted as a gestalt measure of the importance of each factor 
on the outcome. These variance parameters are themselves modeled as coming from a common prior that reflects 
expectations about the overall distribution of effect sizes in the experiment. In the parlance of Bayesian statistics, the 
parameters of the prior distribution are known as hyperparameters, and the priors on the hyperparameters as 
hyperpriors. An astute statistician will note that one could model the parameters of the hyperpriors with priors of 
their own, and so on. This is unnecessary in practice, and the aspiring Bayesian statistician need not worry about 
continuing to define even higher-level parameters to govern these hyperpriors. Although partial pooling is not a 
uniquely Bayesian approach—non-Bayesian mixed models can achieve a similar effect—it would not be possible to 
estimate the variance components for factors with a very small number of levels in a non-Bayesian setting. Using the 
hyperprior on the variance components allows us to do this (Gelman and Hill 2016, pp. 498-500). 
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The experiment defined treatment arms with a set of five factors, described previously. In 
addition, we made the model scale free; that is, all outcomes were standardized to have a mean 
of zero and a standard deviation of 1, as were all continuous predictors; binary predictors were 
left as 0/1. The study analyzed data from respondents in all 72 treatment arms to estimate the 
following model: 

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + � 𝛽𝛽
𝑗𝑗𝑖𝑖

(𝑚𝑚)
(𝑚𝑚)

𝑚𝑚∈𝐹𝐹

+ � 𝜃𝜃
𝑗𝑗𝑖𝑖

(𝑞𝑞),𝑗𝑗𝑖𝑖
(𝑟𝑟)

(𝑞𝑞,𝑟𝑟)

𝑞𝑞,𝑟𝑟∈𝐹𝐹
𝑞𝑞≠𝑟𝑟

+ 𝛾𝛾 ⋅ 𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 . 

In the equation above, respondents are indexed by 𝑖𝑖, so that 𝑦𝑦𝑖𝑖 is the outcome of interest for 
respondent 𝑖𝑖. The set 𝐹𝐹 is a set of indices representing the five factors in the experiment. For a 
given factor 𝑚𝑚 ∈ 𝐹𝐹, the index 𝑗𝑗𝑖𝑖

(𝑚𝑚) indicates the level of factor 𝑚𝑚 respondent 𝑖𝑖 receives. The 
term 𝛽𝛽𝑗𝑗

(𝑚𝑚) represents the main effect of factor 𝑚𝑚 at level 𝑗𝑗, and the term 𝜃𝜃𝑘𝑘,𝑙𝑙
(𝑞𝑞,𝑟𝑟) represents the 

interaction effect between factor 𝑞𝑞 at level 𝑘𝑘 and factor 𝑟𝑟 at level 𝑙𝑙. Thus, the term 𝛽𝛽
𝑗𝑗𝑖𝑖

(𝑚𝑚)
(𝑚𝑚)  in the 

likelihood above represents the main effect of factor 𝑚𝑚 on the outcome of respondent 𝑖𝑖.The 
vector 𝑋𝑋𝑖𝑖 is a set of additional covariates with effects 𝛾𝛾, 𝛼𝛼 is an overall intercept, and 𝜀𝜀𝑖𝑖 is a 
respondent-level error term. 

The prior distributions for the model’s parameters are as follows: 

𝛽𝛽(𝑚𝑚)~𝒩𝒩�0, 𝜏𝜏(𝑚𝑚)� 
𝜃𝜃(𝑞𝑞,𝑟𝑟)~𝒩𝒩�0, 𝜏𝜏(𝑞𝑞,𝑟𝑟)� 
𝜖𝜖~𝒩𝒩(0,𝜎𝜎) 

 

𝜏𝜏(𝑚𝑚)~𝒩𝒩(0,𝜙𝜙main) 
𝜏𝜏(𝑞𝑞,𝑟𝑟)~𝒩𝒩(0,𝜙𝜙int) 
𝛼𝛼,𝜎𝜎, 𝛾𝛾,𝜙𝜙int,𝜙𝜙main~𝒩𝒩(0,1) 

 
Here 𝒩𝒩(0, 𝑠𝑠) indicates either a normal distribution with a mean of zero and standard 

deviation 𝑠𝑠, or the corresponding half normal for the standard deviation parameters 𝜏𝜏, 𝜎𝜎, and 𝜙𝜙 
(the term half normal refers to a normal distribution truncated below a value of zero, meaning 
there are no negative values). The first three rows here define priors for the parameters of main 
interest in the likelihood, while the next two rows define priors for the parameters of these priors. 
The last row sets the prior for parameters we do not want to model with additional structure or 
strong prior information, using a distribution that is broad and relatively uninformative on the 
scale of the model. Some Bayesian statisticians advocate for using Cauchy distributions or even 
so-called improper infinite uniform priors here, but using a normal distribution provides 
additional computational stability and does not represent a strong assumption about the 
parameters. In selecting these priors, we followed previous work (Gelman 2006) and the current 
recommendations from the Stan Development Team (2017).  

Rather than pick a baseline or reference level for each factor in the model, we explicitly 
include a term 𝛽𝛽𝑚𝑚

(𝑚𝑚) for every level of each factor in our model. To preserve identifiability of the 
model, we impose the constraint that the main effects for the levels of each factor must sum to 
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zero: ∑ 𝛽𝛽𝑚𝑚
(𝑚𝑚)

𝑚𝑚 = 0. The effect of a factor is read off relative to zero (and zero is by definition the 
mean of the effects for each factor). We also prefer this approach for the sake of interpretation in 
our results, as no clear baseline category exists for the school information design strategies tested 
in our experiment. We use analogous contrasts for the interaction terms: we explicitly model an 
interaction term 𝜃𝜃𝑝𝑝,𝑞𝑞

(𝑝𝑝,𝑞𝑞) for each combination of levels of each pair of factors and impose the 
constraint that these effects sum to zero within each pair of factors: ∑ 𝜃𝜃𝑝𝑝,𝑞𝑞

(𝑝𝑝,𝑞𝑞)
𝑝𝑝,𝑞𝑞 = 0. This choice 

of contrasts for interaction effects means the expected effect of a given factor level is not, in 
general, equivalent to the main effect 𝛽𝛽𝑚𝑚

(𝑚𝑚) of that level read directly from the model. To read off 
the full effect of a given factor level, we add to the main effect the average of all interaction 
terms that involve that factor level: the total effect of factor 𝑚𝑚 at level 𝑗𝑗(𝑚𝑚) is given by 𝛽𝛽𝑗𝑗(𝑚𝑚)

(𝑚𝑚) +

∑ 1
𝐽𝐽(𝑞𝑞) ∑ 𝜃𝜃𝑗𝑗(𝑚𝑚),𝑗𝑗(𝑞𝑞)

(𝑚𝑚,𝑞𝑞)
𝑗𝑗(𝑞𝑞)𝑞𝑞∈𝐹𝐹

𝑞𝑞≠𝑚𝑚
, where 𝐽𝐽(𝑞𝑞) is the number of levels of factor 𝑞𝑞. 

V. POWER ANALYSES FOR BAYESIAN FACTORIAL EXPERIMENTS 

Although the Bayesian framework for factorial experiments has several advantages, 
determining the number of treatment arms that can be tested with a given sample size can be 
challenging. The statistical precision of our model depends on partial pooling, which in turn 
depends on how many of the factors (and interactions between factors) prove to be important in 
affecting the study’s outcomes of interest, in the sense that the variance of effect sizes turns out 
to be larger within some factors or interactions compared with others (Gelman 2005). If only a 
small number of factors and few interactions are important, there will be more pooling and more 
precision. On the other hand, if many factors and interactions are important, there will be less 
pooling and greater uncertainty in the effect estimates. This means there is uncertainty regarding 
the ultimate precision of a factorial experiment with a given sample size and a given number of 
treatment arms. 

To address this design challenge, we estimate likely values for the minimum detectable 
effect (MDE) by running simulated repetitions of the experiment before it occurs. We simulate 
the experiment under each of a range of possible effect sizes and estimate the smallest effect size 
that allows us to correctly identify favorable treatment arms with at least 80 percent probability. 
Our primary analysis seeks to identify which school display (treatment arm) is most suitable for 
a given outcome by examining paired comparisons of arms. For this analysis, we define the 
effect of an arm to be the average outcome value of that arm (as given by taking the sum of the 
regression coefficients for the given arm) and consider the minimum detectable difference 
between any two arms of the study. Researchers familiar with factorial experiments may be more 
used to considering the main effects of each factor and considering only the minimum detectable 
difference between the effects of different levels of the same factor. In a typical frequentist 
setting, a researcher would model only these main effects and compare regression coefficients, 
but the borrowing of strength induced in our Bayesian setting allows us to model interactions as 
well. As noted above, the effect of a given factor level in our model is calculated as the main 
effect regression coefficient plus the average of those interaction effects that include the given 
factor level. In the power analyses discussed below, we examine MDEs for these main effects in 
addition to the paired comparison of treatment arms that served as the primary contrast of 
interest in our study. 
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To carry out simulated repetitions of the experiment for a given sample size and number of 
treatment arms, we first randomly draw treatment and interaction effects from centered normal 
distributions, whose variance parameters are themselves randomly drawn from a half-Cauchy 
distribution with fixed-scale parameter. For generating simulated data, the Cauchy distribution is 
a good choice to model situations with mostly small effects, but a few large ones (Gelman 2006). 
This differs from the final model used for analysis of the simulated data, which used half-normal 
priors. Changing to half-normal priors for analysis provided our model software with greater 
computational stability and reflected evolving consensus in the Bayesian community (Stan 
Development Team 2017); this change does not noticeably impact the model output.  

We use the generated treatment and interaction effects in each simulation to calculate the so-
called true mean effect of being in each combination of factor levels.  We then transform these 
mean effects to be centered at zero and scaled such that the maximum effect has a fixed and pre-
specified size. We simulate individual participants in the experiment by taking a number of 
normal draws from distributions centered at the effect of each treatment arm, with predetermined 
noise variance. In our experiment, we set our half-Cauchy scale parameter to 5, the difference 
between the maximum and mean treatment effect to 0.25 (as per findings in Jacobsen et al. 
2014), and the variance of individual noise to be 0.88, with this last value chosen such that 12 
percent of the variance in outcomes is explained by observed demographic characteristics (as per 
findings in Tuttle et al. 2013). 

We fit the Bayesian model to the simulated data using Stan (Carpenter et al. 2017). We use 
this model to find the posterior probability of correctly identifying which of the two treatment 
arms in a given pair has the greater effect. Those pairs of treatment arms for which this 
probability is over a certain threshold are considered significant findings. We then fit a logistic 
regression to predict this binary significance from the true effect difference in each pair of 
treatment arms. Based on this logistic regression, we consider the MDE of this experiment to be 
the smallest difference in effect size with at least an 80 percent chance of finding it significant in 
the correct direction by the Bayesian model. For highly underpowered simulations, such as those 
when no significant differences between arms are found, we treat the MDE as effectively infinite 
in our results.  The choice to use a binary significance outcome in this regression was motivated 
by a desire to help explain our calculations in familiar terms to stakeholders who were 
unaccustomed to the language of Bayesian statistics. However, there is no theoretical reason why 
the posterior probability cannot be used directly as the outcome in the regression. In our 
experiment, we set the threshold for significance at 0.975 to correspond to a two-sided p-value at 
the 95-percent confidence level, but experimenters may wish to explore other threshold values or 
even consider dispensing with the intermediate significance calculation altogether.  

Although Stan’s implementation of the Hamiltonian Monte-Carlo algorithm is generally 
stable and effective, when using this type of Markov Chain Monte Carlo (MCMC) method for 
Bayesian inference it is important to verify that the sampler has converged to the posterior 
distribution with sufficient “mixing” of the chains to yield an adequate number of effectively 
independent posterior draws. For each model, we ran three chains with 500 iterations of burn-in 
and estimated posterior distributions from a subsequent 500 iterations of the chain. None of the 
parameters of the model had a Gelman-Rubin potential scale reduction factor (𝑅𝑅�) above 1.1, a 
key statistic consistent with the sampler having converged to the true posterior. Furthermore, 
none of our effects for factors, interactions, or arms was estimated from less than 100 effectively 
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independent posterior draws, and visual inspection of trace plots of the log-posterior and key 
model parameters were also consistent with the chains of the sampler mixing well. Figure 2 
shows examples of these trace plots.  Finally, no iterations of the sampler encountered divergent 
transitions or exceeded the maximum tree depth. 

Figure 2.  Traceplots for representative Stan output 

 

Note: This figure shows the trace plots for the log posterior (on a standardized scale) for each sample size and 
experimental configuration of a single simulation randomly chosen as a representative. The chains do not 
remain stationary or monotonic for any long period, a sign that they are well mixed.  

 
Repeating this simulation process a number of times gives a distribution of MDEs for each 

candidate sample size and number of treatment arms. These distributions are depicted in the box-
and-whiskers plot in Figure 3, which shows the quartiles and outliers for each set of study sizes 
(four different sample sizes, four different numbers of treatment arms). These distributions can 
be used to estimate our uncertainty about the MDE. Although it is not common practice to 
estimate this uncertainty in non-Bayesian power calculations, such uncertainty is always present; 
the precision of an experiment is never completely certain a priori. These simulations merely 
make this fact explicit and allow experimenters to account for the uncertainty about the MDE 
when finalizing their choice of sample size and the number of treatment arms. 
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Figure 3.  Distribution of MDE estimates, by sample size and number of 
treatment arms 

 

Note: This figure illustrates the quartiles for the distribution of possible MDEs for each study design as a box-and-
whiskers plot. The figure shows MDE results for four different factorial designs (16 arms, 72, arms, 180 
arms, and 250 arms), across four different sample sizes. Each of the 16 box plots in the figure summarizes 
the results of 1,000 simulations, and outlier MDE values are shown as individual data points. The figure 
shows that the median MDE rises with the number of arms in the experiment but declines with larger 
sample sizes. In addition, there is less around the median MDE estimate as sample sizes increase (that 
pattern is evident for all study sizes shown, but is less noticeable for studies with fewer treatment arms). 

 
We use the median of these distributions as a point estimate for the MDE; doing so allows 

us to limit the influence of the effectively infinite MDEs that arise from the occasional 
underpowered simulation. However, if more than one-third of the simulations for a given sample 
size and number of treatment arms have power issues that prevent calculating a finite MDE, we 
treat our results as though the experiment cannot be run at this size and omit the results. 
Consequently, several points are missing from subsequent charts of our power simulation results.  

Figure 4 illustrates the relationship between sample size and MDE as a line plot, which 
shows the unsurprising result that increased sample size corresponds to lower MDE, albeit with 
diminishing returns for larger sample sizes. Charts like this allow researchers to carefully select a 
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number of treatment arms and sample size that are compatible with their desired MDE. The 
results also show that, for a fixed sample size, there are diminishing marginal costs (in terms of 
the MDE) of increasing the number of study arms. This is more pronounced for studies with 
larger sample sizes. That is, large sample sizes are doubly valuable for a researcher wishing to 
perform a many-armed experiment, as they lead to lower overall MDEs and reduce the marginal 
loss of precision from adding more treatment arms.  

Figure 4.  Median MDE estimate versus sample size, by number of treatment 
arms 

 

Note: The figure summarizes the expected MDE for four different factorial designs (16 arms, 72, arms, 180 arms, 
and 250 arms), across four different sample sizes. For each design, the data points plotted in the figure 
represent the median MDE across 1,000 simulations. If more than one-third of the simulations for a given 
sample size and number of treatment arms have power issues that prevent the calculation of a finite MDE, 
we omitted the results from the figure. This figure shows that as sample sizes increase (horizontal axis) 
there is a decline in the median of the distribution of estimated MDEs (vertical axis) for each study design. 

 
To compare these results with the precision of a non-Bayesian approach, we performed 

simulations to estimate the MDE of the experiment in a classical setting. We performed these 
simulations using the same process described previously, with only two differences. First and 
most importantly, instead fitting a Bayesian model using hierarchical priors to induce partial 
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pooling, we fit a classical, frequentist regression model with the same covariates. Second, instead 
of determining significance using posterior probabilities (which are a feature of a Bayesian 
model), we used p-values. We adjusted these p-values with the Benjamini-Hochberg correction 
for false discoveries in the presence of multiple comparisons before checking for significance at 
the 0.05 level.  

These simulations show that the Bayesian factorial design provides substantial gains in 
precision over traditional methods. Figure 5 shows the median MDEs for both sets of simulations 
(Bayesian and classical) under a range of study sizes. The Bayesian MDEs are similar to  

Figure 5.  Comparison of Bayesian and classical median MDE estimates, 
paired comparison of arms 

 

Note: Comparing Bayesian and classical designs, this figure shows the relationship between sample size 
(horizontal axis) and the median of the distribution of estimated MDEs (vertical axis) for each study design, 
grouped into lines by the number of treatment arms. In all cases, the MDE for the Bayesian design is lower 
than that for the corresponding classical design, but the differences are larger for factorial designs with 
larger numbers of treatment arms. Certain combinations of sample size and number of treatment arms 
(such as the 16-arm experiment with 1,000 respondents) are missing from this plot because more than one-
third of simulations did not produce a finite MDE estimate, a sign of extremely low power. 
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classical estimates for studies with few treatment arms, but considerably better for complex 
studies. For example, to test 72 treatment arms for a given MDE, a classical experiment requires 
roughly twice the sample size as a Bayesian experiment. Figure 6 shows the same summary 
information for the so-called main effects MDE calculations: the relative gains in precision from 
the Bayesian approach remain similar when considering main effects. 

Figure 6.  Comparison of Bayesian and classical median MDE estimates, 
main effects 

 

Note: Comparing Bayesian and classical designs, this figure shows the relationship between sample size 
(horizontal axis) and the median of the distribution of estimated MDEs (vertical axis) for each study design, 
grouped into lines by the number of treatment arms. The relative performance between Bayesian and 
classical designs follows a similar pattern to the pairwise comparison results in Figure 5. As with Figure 5, 
certain combinations of sample size and number of treatment arms (such as the 16-arm experiment with 
1,000 respondents) are missing from this plot because more than one-third of simulations did not produce a 
finite MDE estimate, a sign of extremely low power. 

 
Based on the results of these power calculations and discussions with the broader research 

team involved with the study, we elected to proceed with a design using 72 treatment arms and 
3,500 study participants. This was sufficient to provide us with a median MDE of approximately 
0.25 standard deviations in a comparison of any two treatment arms, which was consistent with 
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the magnitude of effects that had been observed in other studies of school information displays 
and how they affect parents (for example, Jacobsen et al. 2014).     

VI. DISCUSSION: APPLYING THE DESIGN 

Although a factorial design offers clear and substantial benefits, a researcher intending to 
embark on such an experiment must plan for the greater logistical complexity that comes with 
running a large study with many treatment arms. This challenge does not inherently arise from 
Bayesian methods—any large factorial experiment would need to exercise such caution—but the 
ability to test many more treatment arms using a given sample size makes such complex 
experiments more feasible. In the case of the education study examined here, we managed the 
entire experiment and all of its interventions in the context of a single web-based survey. 
Managing the study in this way allowed the research team to use online tools to randomly assign 
participants to treatment arms and track their progress. This made administering the experiment 
substantially easier—the experiment’s logistical complexity was mostly driven by carefully 
designing the 72 information displays and ensuring that the study’s random assignment and 
survey procedures operated smoothly. In the context of a field experiment testing variations in a 
policy or program, issues of intervention design, intervention implementation, contamination 
across treatment arms, and differential attrition would make managing such a large number of 
interventions and treatment arms considerably harder.  

There are several other challenges that come with the use of a Bayesian approach. First, a 
Bayesian experiment requires more upfront work to design: power calculations must consider a 
wider range of study designs, and selecting an appropriate model requires careful review of 
existing literature and precise a priori reasoning about the experiment. Bayesian models force 
researchers to make explicit assumptions about their experiment in the form of priors, and 
although non-Bayesian models implicitly make their own assumptions (often implausible ones), 
many researchers are discouraged by the task of setting a good prior. More specifically, to 
perform sample size computations for their own Bayesian factorial experiment, researchers 
would need to follow these steps: 

1. Hypothesize treatment effects. To set up this power calculation, researchers need to make 
assumptions about the potential size and distribution of true treatment effects for the selected 
set of intervention factors (and specify hypothetical distributions for the other parameters in 
the study’s analytical model).  

2. Design the factorial study.  The next step in the power analysis is to specify the design of 
the study and the candidate configuration (or configurations, if the power analysis seeks to 
compare multiple design options) of factors and factor levels. 

3. Calculate power using many simulated runs of the experiment. This involves repeatedly 
simulating data from the hypothetical distribution specified in step 1 (our power analyses 
used 1,000 simulations) and then fitting a multilevel model to each simulated data set. The 
power analysis returns the proportion of the simulations where a given effect size for one of 
the contrasts of interest passes a selected posterior probability threshold for detection. By 
examining the distribution of results from these simulations, researchers can select the 
necessary sample size to achieve the desired MDE for their experiment. 
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In addition to the added steps involved with power calculations, Bayesian methods do entail 
other potential challenges. Bayesian inference is somewhat more computationally intensive than 
classical methods. Until recently, the time and resources required for Bayesian modeling made it 
impractical for large and complex experiments. However, in recent years new software has made 
this approach much more feasible (Carpenter et al. 2017). Finally, the relative newness of 
Bayesian methods in the policy sphere may make explaining the study’s methods and results 
more difficult to policymakers who are accustomed to conventional approaches that use 
statistical significance. For example, the U.S. Department of Education’s What Works 
Clearinghouse has yet to develop explicit standards for assessing the modeling decisions in 
Bayesian studies or guidance for how impact findings generated using Bayesian models should 
be compared with results estimated using classical models. In a high-stakes evaluation, 
researchers should carefully consider how the decision to apply Bayesian methods will impact 
their experimental process and be viewed among decision makers.   

That said, we believe that the type of large factorial experiment enabled by Bayesian 
modeling has the potential to reveal readily applicable insights and help experimenters uncover 
optimal combinations of tested practices for a wide range of practitioners and policymakers. 
With the benefits of this analytical approach, the primary barrier to conducting complex 
experiments should be the logistics of managing many treatment arms, rather than concerns over 
sample size or the precision of effect estimates. We look forward to seeing factorial experiments 
applied in a broader range of policy areas and contexts. 
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